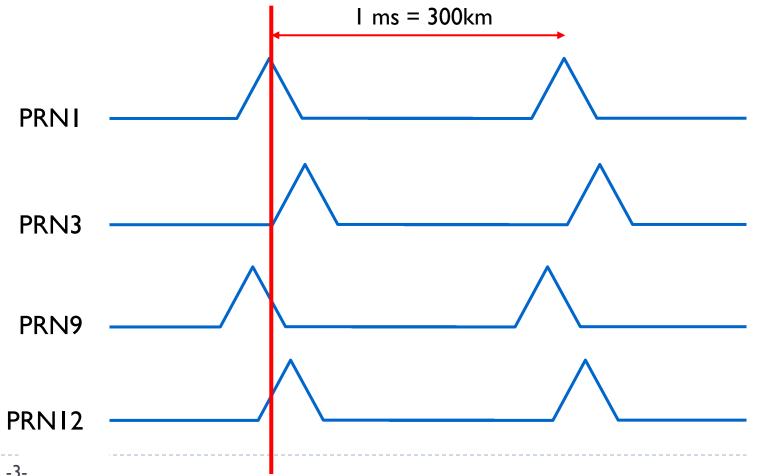
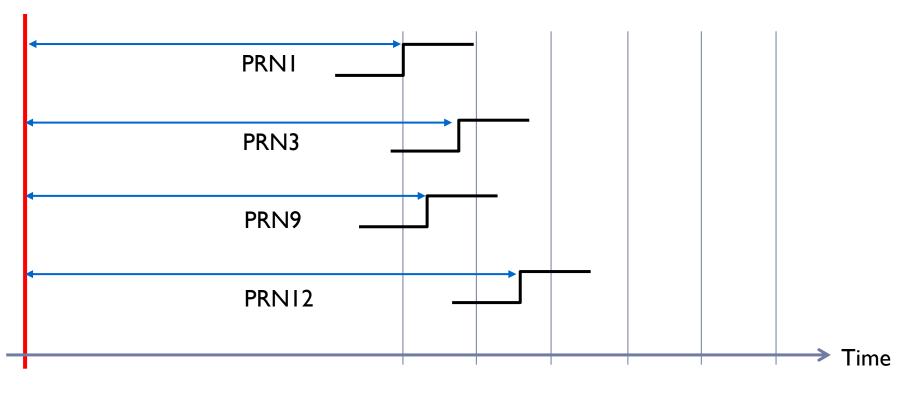
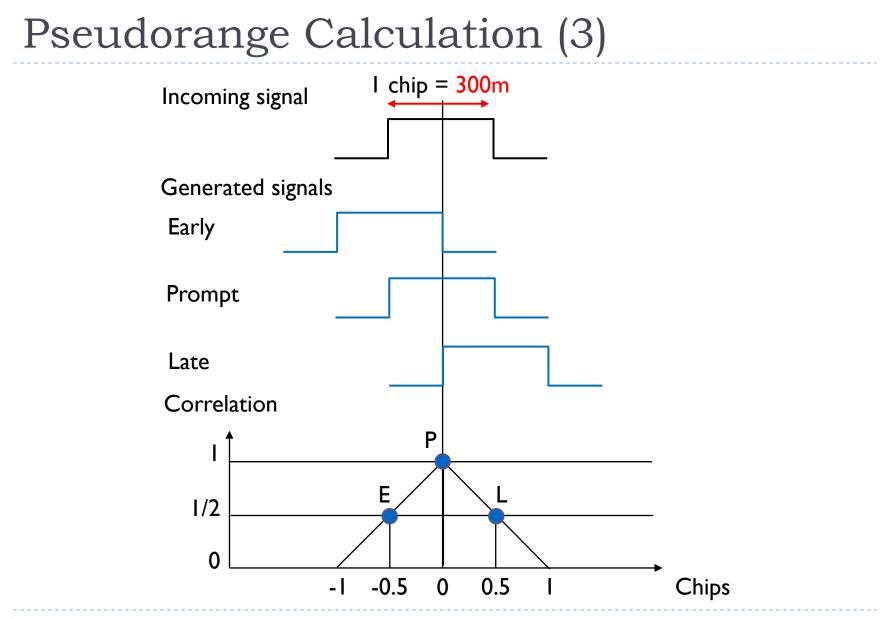

10: Positioning

Taro Suzuki

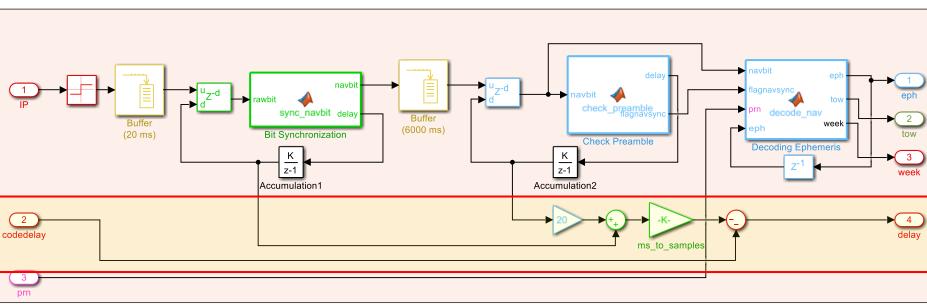

Pseudorange Calculation (1)

 Calculate distance based on difference between transmission time and reception time

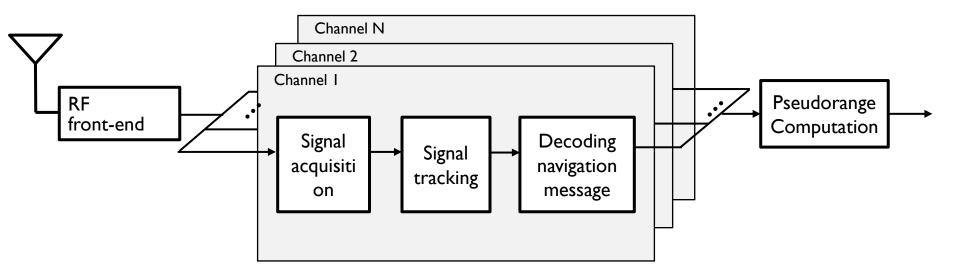

Pseudorange Calculation (2)


The code phase shift for each satellite is the relative difference in distance

Pseudorange Calculation (2)


- Find the time difference at the beginning of the subframe
- Time synchronization of less than 1 ms is adjusted by E-P-L correlator

Delay Computation


- Initial code phase + remcode
- Bit synchronization + subframe synchronization

Decoding

Parallel processing for each satellite signal

- Calculate the pseudoranges from the delay information of each channel at a certain timing of the receiver
- Aggregate the results of satellite signal tracking executed in parallel and calculate the range

Simulink Model

Use of For Each Subsystem

Parallelized signal processing (acquisition, tracking, decoding)

RINEX

Receiver Independent Exchange Format

- ASCII
- Pseudorange, carrier phase, Doppler, Signal-to-Noise ratio

1		3.03	8		OBSERV	ATION	DAT	A N	: Mixed			RINEX VERSION / TYPE+
2	RTKCO	NV 2	4.3	b34				2	0220806	173351	UTC	PGM / RUN BY / DATE
3												MARKER NAME
4												MARKER NUMBER
5												MARKER TYPE
6												OBSERVER / AGENCY +
7												REC # / TYPE / VERS +
8												ANT # / TYPE
9		0	, 000	0	0.00	00		0.000	00			APPROX POSITION XYZ 4
10		0	, 000	0	0,00	00		0.000	00			ANTENNA: DELTA H/E/N+
11	G	1 C1	C									SYS / # / OBS TYPES +
12	202		08	05	06	48	36	90000	000	GPS		TIME OF FIRST OBS
13	202	2	08	05	06	49	18.	90000	000	GPS		TIME OF LAST OBS
14	0											GLONASS SLOT / FRQ #+
15	CIC	0	. 000	C1P	0.000	C2C	0.	000 0	2P 0	. 000		GLONASS COD/PHS/BIS +
16												END OF HEADER
17	> 202	2 08	05	06 48	42.0000	000	0 6				4	
18			5887		+							
19	G05		7026		4							
20	G13		2987		4							
21		2.510.0	9127	A	+							
22			9870		4							
23			2839		4							

RTCM

- Format for real-time GNSS communication
 - Binary
 - Originally a data format for differential correction, RTCM MSM, a format for communicating GNSS observations, was also specified

T	YPE	GPS	GLONASS	Galileo	QZSS	BDS	SBAS	Navic
OBS	COMP L1	1001~	1009~	12	-	1.525	12	-4
	FULL L1	1002	1010	-	-	-	-	-+
	COMP L1L2:	1003~	1011~	-	-	-	-	
	FULL L1L2	1004	1012	-	-	-	-	-4
NAV		1019	1020	1045**	1044	1042	-	1041+
		-	-	1046**	-	63*	-	-+
//S//	1	1071~	1081~	1091~	1111~	1121~	1101~	1131~
	2	1072~	1082~	1092~	1112~	1122~	1102~	1132~
	3	1073~	1083~	1093~	1113~	1123~	1103	1133
	4 :	1074	1084	1094	1114	1124	1104	1134+
	5	1075	1085	1095	1115	1125	1105	1135
	6	1076	1086	1096	1116	1126	1106	1136
	7	1077	1087	1097	1117	1127	1107	1137
SSR	ORBIT	1057	1063	1240+	1246*	1258*	-	-4
	CLOCK	1058	1064	1241*	1247*	1259*	-	-+
	CODE BIAS	1059	1065	1242*	1248*	1260*	-	-+
	OBT/CLK	1060	1066	1243*	1249*	1261*	-	-+
	URA	1061	1067	1244*	1250*	1262*	-	-+
	HR-CLOCK	1062	1068	1245*	1251*	1263*	-	-4
	PHAS BIAS	11*	-	12*	13*	14*	-	-+
	RCV INFO		1008	1033+				
STA	POSITION	1005	1006+					
PRO	PRIETARY	4076	(165) +					

for MSM observation data with multiple signals for a frequency, + a signal is selected according to internal priority. to select+ a specified signal, use the input options. +

RTCM 3 message format: +

preamble	000000	length	data message	parity
< 8>	<- 6>	< 10>	< length x 8>	< 24>

Positioning Computation (1)

$$\rho_{c}^{(k)} = r^{(k)} + c\,\delta t_{u} + \widetilde{\varepsilon}_{\rho}^{(k)}$$

$$r^{(k)} = \sqrt{(x^{(k)} - x)^2 + (y^{(k)} - y)^2 + (z^{(k)} - z)^2} = \|\mathbf{x}^{(k)} - \mathbf{x}\|$$

$$b = c \,\delta t_u$$

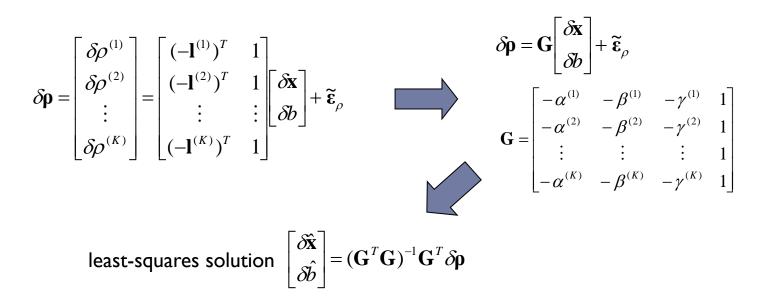
$$\rho_{c}^{(k)} = \left\| \mathbf{x}^{(k)} - \mathbf{x} \right\| + b + \widetilde{\varepsilon}_{\rho}^{(k)}$$

Satellite position at t-t

$$\mathbf{x}^{(k)} = \begin{bmatrix} \cos \omega_E \tau & \sin \omega_E \tau & 0 \\ -\sin \omega_E \tau & \cos \omega_E \tau & 0 \\ 0 & 0 & 1 \end{bmatrix} \widetilde{\mathbf{x}}^{(k)}$$

$$\rho_{c}^{(k)}$$
 Compensated Pseudorange

$$r^{(k)}$$
 True range
 δt_{u} Receiver clock error
 $\widetilde{\epsilon}_{\rho}^{(k)}$ Pseudorange noise
 $\mathbf{x}^{(k)}$ Satellite position at t
 $\widetilde{\mathbf{x}}^{(k)}$ Satellite position at t- τ
 \mathbf{x} User position
 b Receiver clock error [m]
 Θ_{E} Earth rotation rate
 τ Propagation time

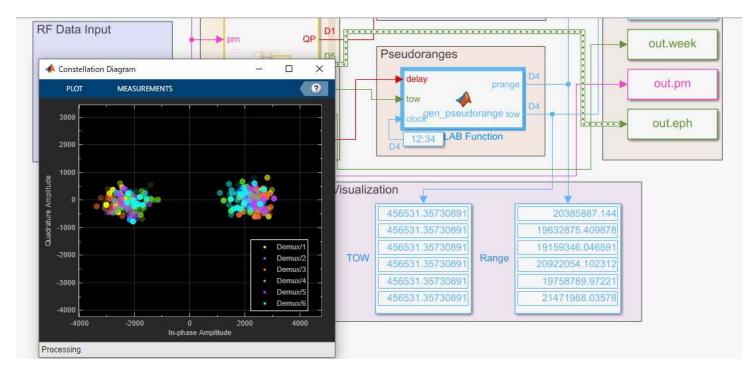

Positioning Computation (2)

$$\rho_{c}^{(k)} = \left\| \mathbf{x}^{(k)} - \mathbf{x} \right\| + b$$

Linearize the observed equations for the number of and find the correct solution by iteration

$$\mathbf{I}^{(k)} = \begin{pmatrix} \alpha^{(k)} \\ \beta^{(k)} \\ \gamma^{(k)} \end{pmatrix} = \begin{pmatrix} \frac{x^{(k)} - x_0}{R_0^k} \\ \frac{y^{(k)} - y_0}{R_0^k} \\ \frac{z^{(k)} - z_0}{R_0^k} \end{pmatrix} \qquad R_0^{(k)} = \sqrt{(x^{(k)} - x_0)^2 + (y^{(k)} - y_0)^2 + (z^{(k)} - z_0)^2}$$

Positioning Computation (3)


Recalculate the first estimate corrected by the above solution. If the estimates of the next calculation converge, the calculation is completed.

$$\hat{\mathbf{x}} = \mathbf{x}_0 + \delta \hat{\mathbf{x}}$$
$$\hat{b} = b_0 + \delta \hat{b}$$

Exercise 1: Positioning using RTKLIB (1)

Simulink

> /I0_Positioning + SDR_Application/simulink/ExI/sdr_positioning.slx

Pseudoranges are saved to MATLAB Workspace

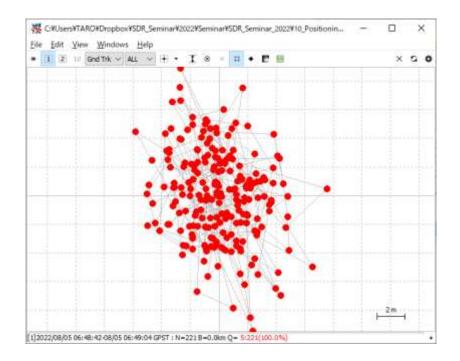
Exercise 1: Positioning using RTKLIB (2)

MATLAB

- /I0_Positioning+SDR_Application/simulink/ExI/run_gen_rinex.m
- Pseudoranges and time information is converted to RINEX file

sdr_obs.obs

<u>sdr_nav.nav</u>


1 4 3	3.02	OBSERVATION DATA G: GPS 2022080	RINEX VERSION / TYPE+ 9 155724 UTC PGM / RUN BY / DATE + MARKER NAME	1 3.02 N: GNSS NAV DATA N: Nixed RINEX VERSION / TYPE+ 2 20220809 155724 UTC PGM / RUN BY / DATE + END OF HEADER +
19 20 21 22 23 24 25 26 27 28 29	6 1 C1C 2022 08 05 2022 08 05 0 05	0.0000 0.0000 0.0000 0.0000 06 48 47.9573097 06 49 23.9573016 47.9573097 0 6		3 END 0F HEADER 4 602 2022 08 05 7 59 44 - 649891328067D-03 909494701773D-12 0000000000000-004 5 8000000000D+01 - 567812500000P402 4395696886569D-08 - 1342454506961+014 6 - 280886888504D-05 199471334927D-01 9156562619877D-05 - 515487974548D-044 7 - 460784000000D+06 - 335276126662D-06 12732360928D+01 - 824070040111D-084 9 - 167864135072D-09 10000000000D000 - 72294676304D-07 8000000000000-04 10 2000000000D+06 - 000000000000-04 - 000000000000-04 12 605 2022 08 00 - 125625000000-02 451804533758D-08 127297544227D+01 14 - 659376382828D-06 611729302909D-02 811740756035D-05 515376311874D-04 15 46080000000D+06 - 325276126862D-77 225706787130D+01
32	> 2022 08 05 06 48 602 20385887.144	48.1573096 0 6	*	29 930000000000+02 - 2543750000000+02 542486882470D-08 - 505896645654D-01+

Exercise 1: Positioning using RTKLIB (3)

Run <u>/rtklib/rtkpost.exe</u>

	🗱 RTKPOST ver.2.4.3 b34 —		\times
	Time Start (GPST) ? Time End (GPST) ? Interview 2000/01/01 ▲ 00:00:00 ▲ 2000/01/01 ▲ 00:00:00 ▲ 0 ✓		t H
	RINEX OBS ?	0 E	
<u>sdr_obs.obs</u>	C:¥Users¥TARO¥Dropbox¥SDR_Seminar¥2022¥Seminar¥SDR_Seminar_2022¥	10_Posit 🗸	
	RINEX OBS: Base Station	0 🗆	
		~	
	RINEX NAV/CLK, SP3, FCB, IONEX, SBS/EMS or RTCM		
<u>sdr_nav.nav</u>	C:¥Users¥TARO¥Dropbox¥SDR_Seminar¥2022¥Seminar¥SDR_Seminar_2022¥	10_Posi 🗸	
		~	
		~	
		~	
	Solution Dir		
	C:¥Users¥TARO¥Dropbox¥SDR_Seminar¥2022¥Seminar¥SDR_Seminar_2022¥	10_Posi v	
		_	?
	⊕ Plot E View KML/GPX Cptions Execute	E <u>x</u> it	:

Exercise 1: Positioning using RTKLIB (4)

Advanced challenge

- Estimate position with RF data acquired by yourself!
- Compare positioning results by changing the DLL noise bandwidth
- Realtime processing using RTL-SDR dongle!

10: SDR Application

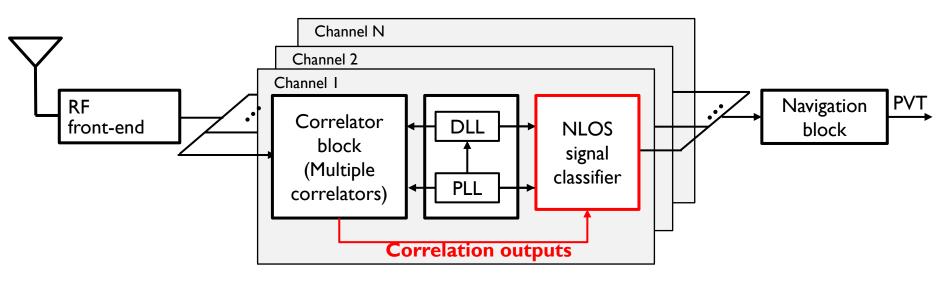
Taro Suzuki

NLOS Multipath

LOS Multipath LOS satellite HHOFE

LOS(Line-Of-Sight) Multipath

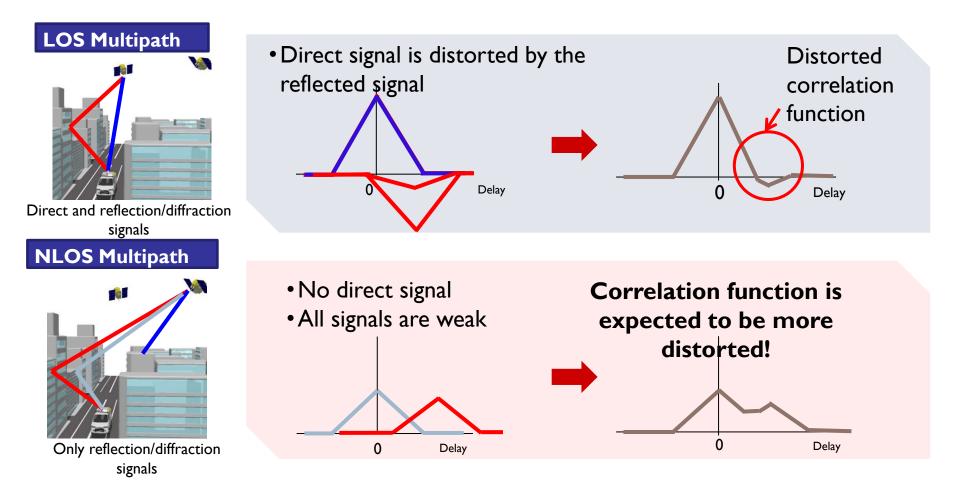
- Direct + Reflected /Diffracted Signal
- Correlation technique is available


NLOS Multipath NLOS satellite

NLOS(Non-Line-Of-Sight) Multipath

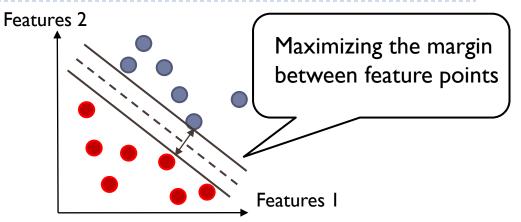
- Only Reflected / Diffracted Signal
- Correlation technique is NOT available

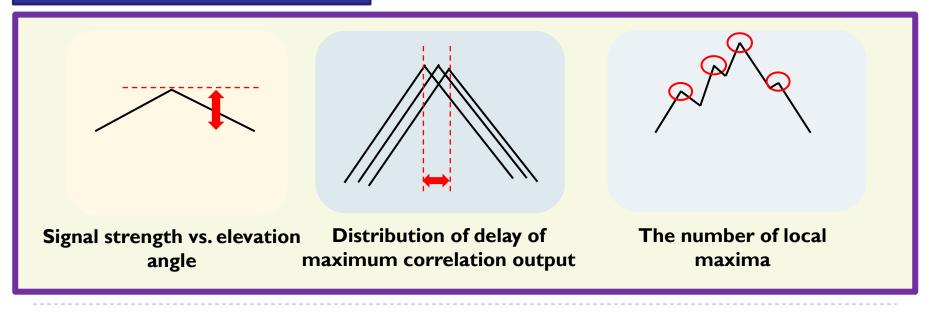
NLOS Classifier


Software GNSS Receiver

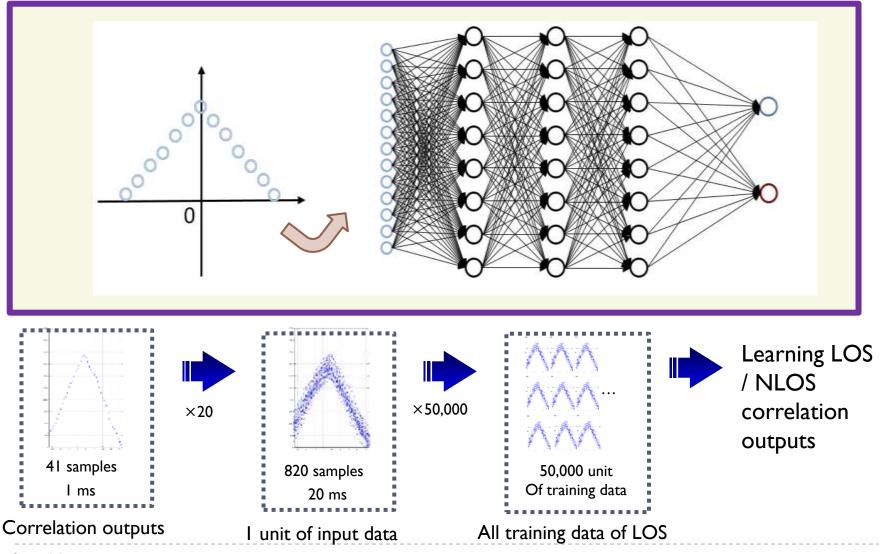
Add NLOS signal classifier after signal correlator block

Direct machine learning of GNSS signal correlation output, which is the most primitive GNSS signal processing output!

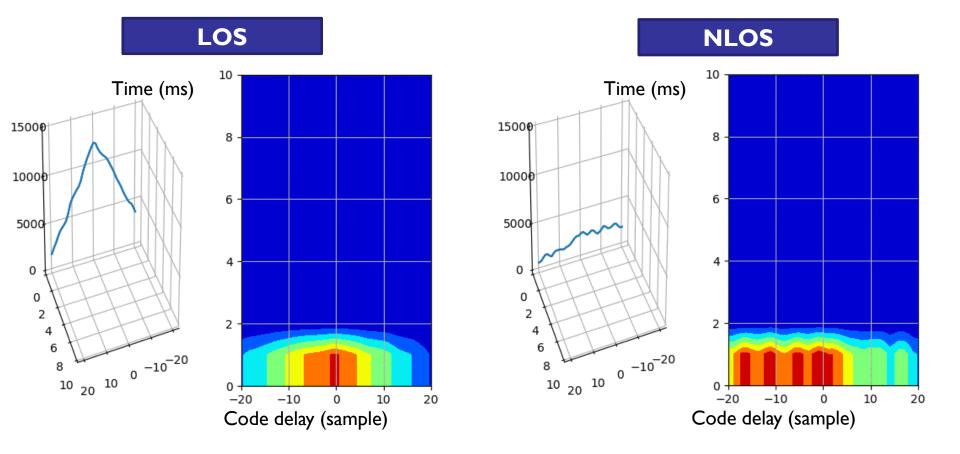

Multipath Effects for Signal Correlation


Related Research (Support Vector Machine)

Support Vector Machine


- Classification method using Supervised learning
- Maximizing the margin

NLOS features for SVM

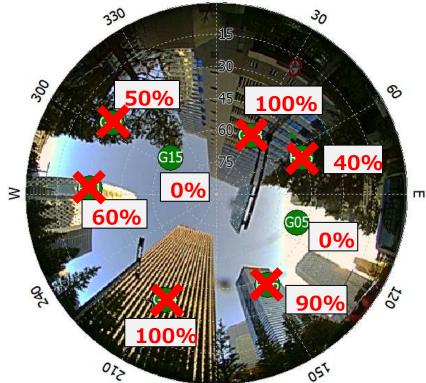


Related Research (Neural Network)

-23-

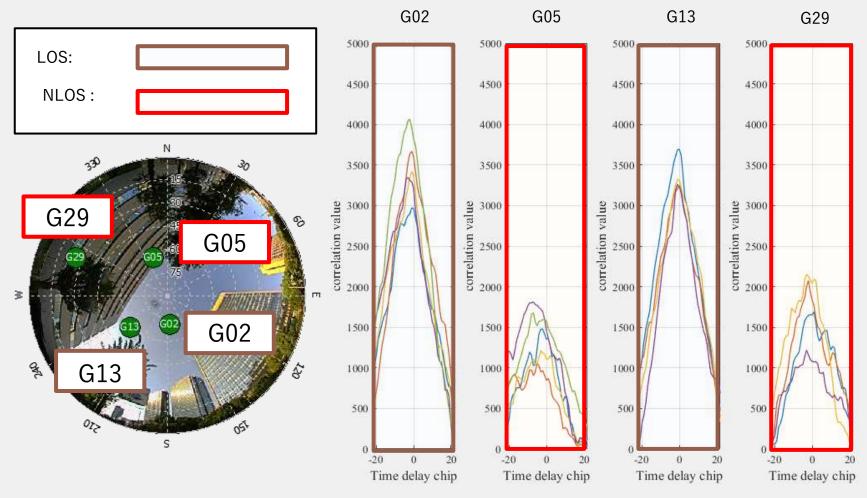
Idea – using Convolutional NN -

CNN can handle the time-dependent NLOS features !

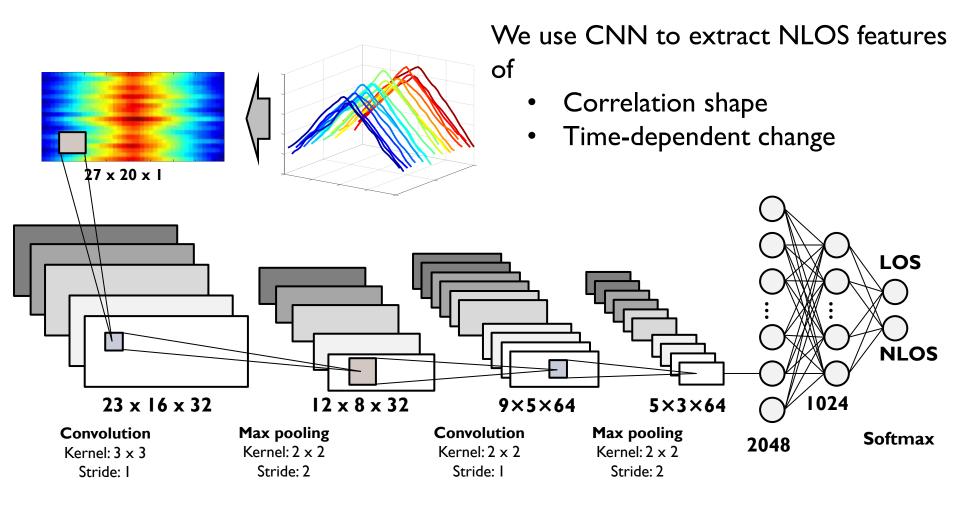

-24-

Idea – using NLOS probability -

• Binary calcification of LOS/NLOS decrease positioning availability...



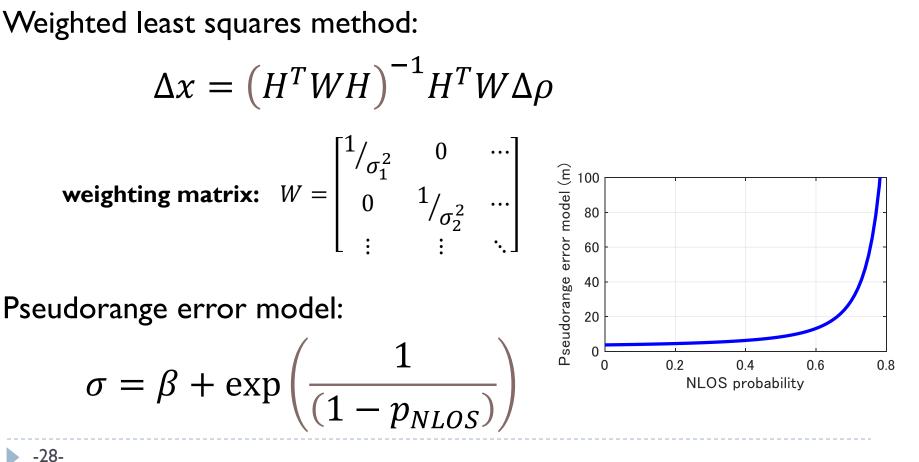
 Weighting pseudorange observations of GNSS using the probability of NLOS estimated by CNN


We can improve **positioning accuracy and availability !**

Correlation Outputs (GPS L1C/A)

Displays 20 correlation outputs (20 ms)

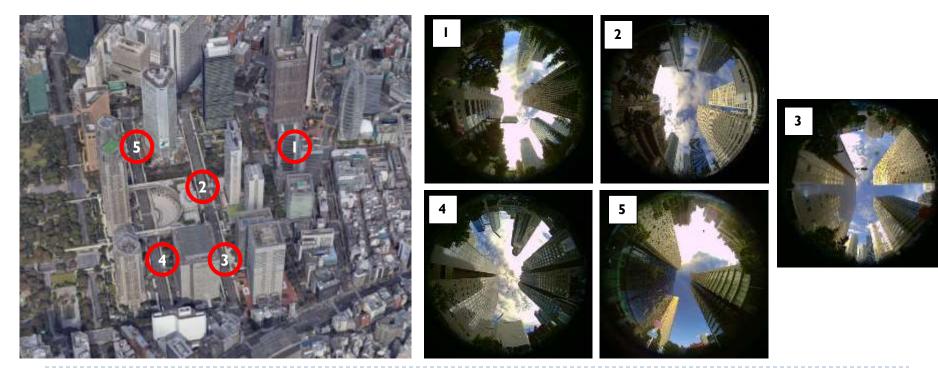
Network Configuration

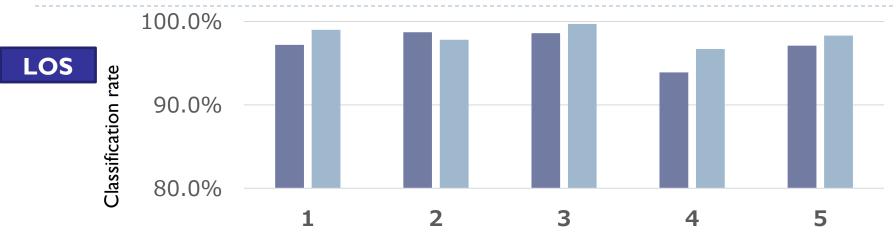


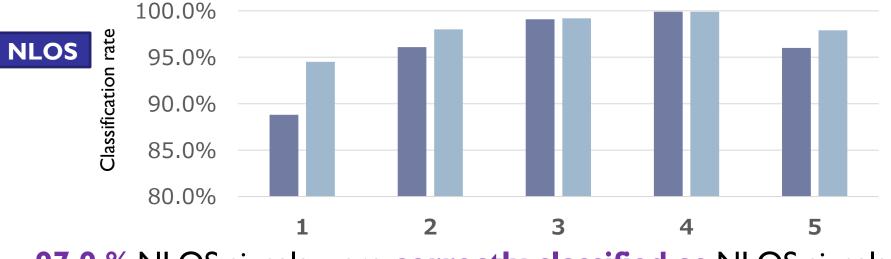
Weighting with NLOS probability

Pseudorange observations equation:

$$\Delta \rho = H \Delta x + \epsilon$$

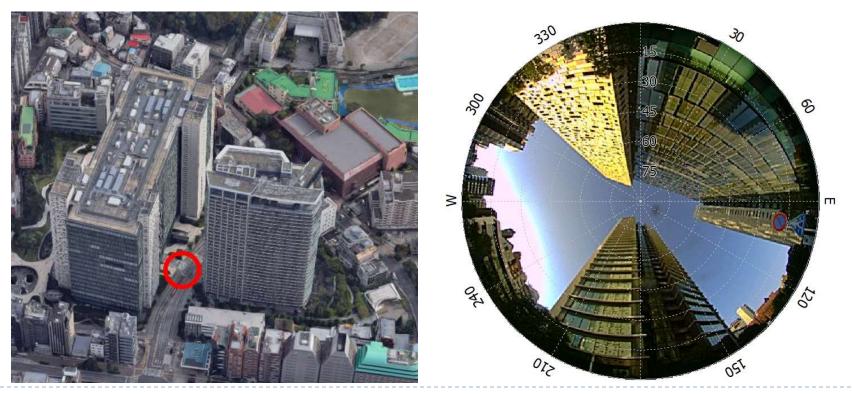

Weighted least squares method:


Evaluation

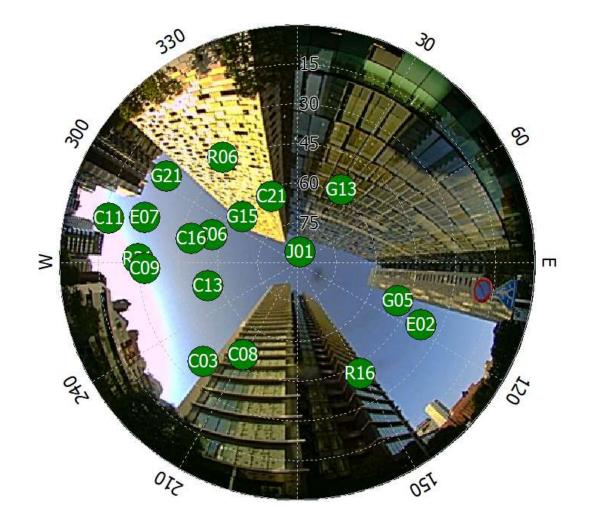

Evaluation of proposed technique in urban environment Location: Shinjuku area in Japan (5 locations) We compare classification performance of **NN** and **CNN**

• Reference NLOS signals are manually determined from fish-eye image

Classification Results

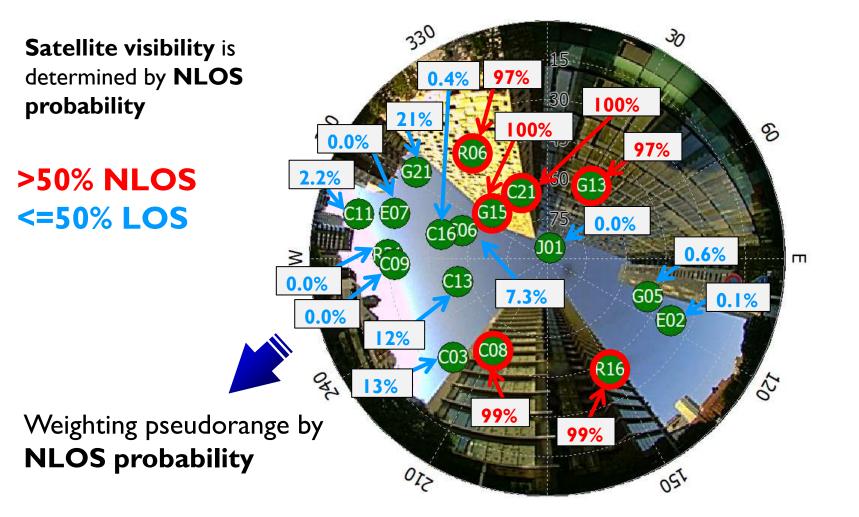


97.9 % NLOS signals were correctly classified as NLOS signals !

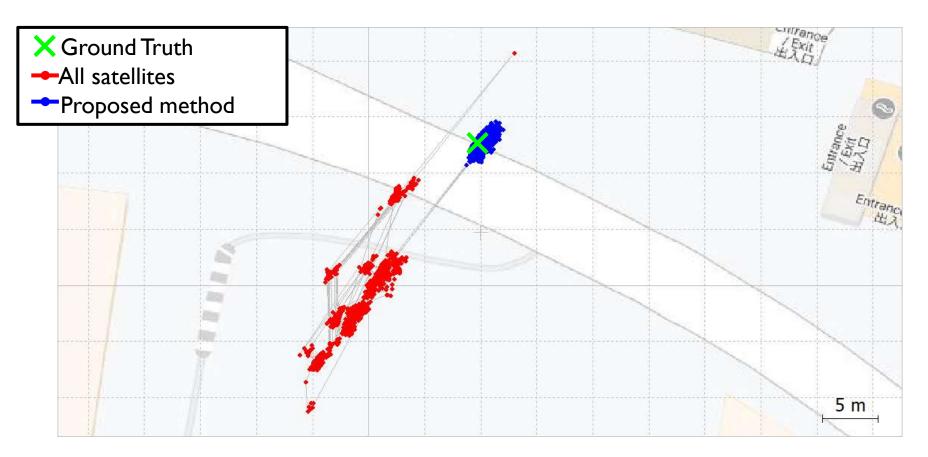

Positioning Test

Evaluation of proposed technique in urban environment

Location: Shinjuku area in Japan Method: Single Point Positioning (RTKLIB) SNR mask: 35 dB-Hz, Elevation mask: 15°



Classification Result


-32-

Classification Result

-33-

Positioning Result

Horizontal root mean square error was reduced from **34.1 m** to **1.6 m**!

Conclusion

- GNSS receiver is an aggregation of technologies from various fields
- By modifying the GNSS signal processing, a greater variety of ideas can be used than if only the normal receiver outputs were available
- The contribution of software GNSS receivers is especially important for the GNSS field, where new satellites and signals are increasing
- Software receiver technology is extremely useful for research