
FPGA Basics 3

Sequential Logic Design and Simulation

GNSS Receiver Architecture

Correlators

Channel

Micro-
Controller

Acquisition
Tracking
Navigation

Antenna

Frontend

Digital SignalRF Signal

Position
Velocity
Timing

FPGA
IF signal

GNSS Correlator Architecture
 Correlators are the key operation for GNSS receivers to

synchronize with the incoming signal.
 The maximum correlation peak is acquired when the

both code and carrier replicas match the incoming signal.

Accumulator
IF signal Correlation

Code replica

Carrier replica

Mixer

C/A Code Generator

C/A Code

XOR

G1 Register

G2 Register

Phase Selector

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Code Clock

1.023MHz

Maximum Length Sequence
 A maximum length sequence, also sometimes called an m-

sequence, is a type of pseudorandom binary sequence.
 They are bit sequences generated using maximal linear-

feedback shift registers.
 They are periodic and reproduce every binary sequence,

except the zero vector.
 For length-𝑚 registers, they produce a sequence of length 2௠ − 1.

Sequential Logic in Verilog
 Sequential logic defines modules that have memory.
 Flip-Flops, Latches, Registers, Finite State Machines, …

 Sequential logic is triggered by a “clock” event.
 Flip-Flops are sensitive to the transitioning (edge) of clock.
 Latches are sensitive to level of the signal

 Combinational constructors are not sufficient.
 We need new constructor: always
 Whenever the event in the sensitivity list occurs, the statement

is executed.

always @ (sensitivity list)
statement;

D Flip-Flop

module flop(input clk,
input d,
output reg q);

always @ (posedge clk)
q <= d;

endmodule

D Q
d q

clk

D Flip-Flop

 The posedge defines a rising edge.
 The process will trigger only if the clk signal rises.

module flop(input clk,
input d,
output reg q);

always @ (posedge clk)
q <= d;

endmodule

D Flip-Flop

 Once the clk signal rises, the value of d will be copied to q.
 “assign” statement is not used within always block.
 The “<=“ describes a “non-blocking” assignment.

module flop(input clk,
input d,
output reg q);

always @ (posedge clk)
q <= d;

endmodule

D Flip-Flop

 Assigned variables need to be declared as reg.
 The name reg does not necessarily mean that the value

is a register.

module flop(input clk,
input d,
output reg q);

always @ (posedge clk)
q <= d;

endmodule

D Flip-Flop with Synchronous Reset

 Reset only happens when the clock rises.

module flop(input clk,
input rstn,
input d,
output reg q);

always @ (posedge clk) begin
if (!rstn) q <= 0;
else q <= d;

end

endmodule

Design Flows

HDL Design

Behavioral
Simulation

Synthesis

Implementation

Architecture Design

Bitstream

This process transforms the HDL design into a gate
level representation (netlist).

This is the process of creating the hardware logic itself,
typically by writing register-transfer level (RTL) using a
hardware description language (HDL).

This step ensure that the design works as intended
using a specified testbench module.

This step provides all the features necessary to optimize,
place and route the netlist onto the available device
resources of the target part.

What is a Testbench?
 Testbenches consist of non-synthesizable Verilog code

which generates inputs to the design and checks that the
outputs are correct.

 The diagram below shows the typical architecture of a
simple testbench.

Inputs
(Stimulus)

Design
Under Test

(DUT)

Output
Waveforms

Testbench

Simulation Tools
 The stimulus block generates the inputs to the FPGA

design under test, and the output block shows the output
waveforms to ensure they have the correct values.

 Many freely available software packages offer behavioral
simulation capability.
 Commercial: Vivado (AMD/Xilinx) and Quartus (Intel)
 Open Source: Icarus Verilog and GTKWave
 Online: EDA Playground (https://www.edaplayground.com/)

Linear Feedback Shift Register (LFSR)

D Q D Q D Q D Q

XOR

clk
q2q1q0 q3

Linear Feedback Shift Register (LFSR)
q3 q2 q1 q0 Decimal Hex

0 0 0 1 1 1

0 0 1 0 2 2

0 1 0 0 4 4

1 0 0 1 9 9

0 0 1 1 3 3

0 1 1 0 6 6

1 1 0 1 13 d

1 0 1 0 10 a

0 1 0 1 5 5

1 0 1 1 11 b

0 1 1 1 7 7

1 1 1 1 15 f

1 1 1 0 14 e

1 1 0 0 12 c

1 0 0 0 8 8

0 0 0 1 1 1

LFSR Verilog Example

module lfsr(input clk,
input rstn,
output reg [3:0] q);

always @ (posedge clk) begin
if (!rstn) q <= 4’b1;
else q <= {q[2:0], q[2] ^ q[3]};

end

endmodule

Testbench

module lfsr_tb;

reg clk;
reg rstn;
wire [3:0] q;

lfsr dut(clk, rstn, q);

always #5 clk <= ~clk;

lfsr_tb.v

Continued…

Testbench

initial begin
clk <= 0;
rstn <= 0;

#20 rstn <= 1;
#80 rstn <= 0;
#50 rstn <= 1;

#200 $finish;
end

endmodule

