
FPGA Basics 3

Sequential Logic Design and Simulation

GNSS Receiver Architecture

Correlators

Channel

Micro-
Controller

Acquisition
Tracking
Navigation

Antenna

Frontend

Digital SignalRF Signal

Position
Velocity
Timing

FPGA
IF signal

GNSS Correlator Architecture
 Correlators are the key operation for GNSS receivers to

synchronize with the incoming signal.
 The maximum correlation peak is acquired when the

both code and carrier replicas match the incoming signal.

Accumulator
IF signal Correlation

Code replica

Carrier replica

Mixer

C/A Code Generator

C/A Code

XOR

G1 Register

G2 Register

Phase Selector

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Code Clock

1.023MHz

Maximum Length Sequence
 A maximum length sequence, also sometimes called an m-

sequence, is a type of pseudorandom binary sequence.
 They are bit sequences generated using maximal linear-

feedback shift registers.
 They are periodic and reproduce every binary sequence,

except the zero vector.
 For length-𝑚 registers, they produce a sequence of length 2 − 1.

Sequential Logic in Verilog
 Sequential logic defines modules that have memory.
 Flip-Flops, Latches, Registers, Finite State Machines, …

 Sequential logic is triggered by a “clock” event.
 Flip-Flops are sensitive to the transitioning (edge) of clock.
 Latches are sensitive to level of the signal

 Combinational constructors are not sufficient.
 We need new constructor: always
 Whenever the event in the sensitivity list occurs, the statement

is executed.

always @ (sensitivity list)
statement;

D Flip-Flop

module flop(input clk,
input d,
output reg q);

always @ (posedge clk)
q <= d;

endmodule

D Q
d q

clk

D Flip-Flop

 The posedge defines a rising edge.
 The process will trigger only if the clk signal rises.

module flop(input clk,
input d,
output reg q);

always @ (posedge clk)
q <= d;

endmodule

D Flip-Flop

 Once the clk signal rises, the value of d will be copied to q.
 “assign” statement is not used within always block.
 The “<=“ describes a “non-blocking” assignment.

module flop(input clk,
input d,
output reg q);

always @ (posedge clk)
q <= d;

endmodule

D Flip-Flop

 Assigned variables need to be declared as reg.
 The name reg does not necessarily mean that the value

is a register.

module flop(input clk,
input d,
output reg q);

always @ (posedge clk)
q <= d;

endmodule

D Flip-Flop with Synchronous Reset

 Reset only happens when the clock rises.

module flop(input clk,
input rstn,
input d,
output reg q);

always @ (posedge clk) begin
if (!rstn) q <= 0;
else q <= d;

end

endmodule

Design Flows

HDL Design

Behavioral
Simulation

Synthesis

Implementation

Architecture Design

Bitstream

This process transforms the HDL design into a gate
level representation (netlist).

This is the process of creating the hardware logic itself,
typically by writing register-transfer level (RTL) using a
hardware description language (HDL).

This step ensure that the design works as intended
using a specified testbench module.

This step provides all the features necessary to optimize,
place and route the netlist onto the available device
resources of the target part.

What is a Testbench?
 Testbenches consist of non-synthesizable Verilog code

which generates inputs to the design and checks that the
outputs are correct.

 The diagram below shows the typical architecture of a
simple testbench.

Inputs
(Stimulus)

Design
Under Test

(DUT)

Output
Waveforms

Testbench

Simulation Tools
 The stimulus block generates the inputs to the FPGA

design under test, and the output block shows the output
waveforms to ensure they have the correct values.

 Many freely available software packages offer behavioral
simulation capability.
 Commercial: Vivado (AMD/Xilinx) and Quartus (Intel)
 Open Source: Icarus Verilog and GTKWave
 Online: EDA Playground (https://www.edaplayground.com/)

Linear Feedback Shift Register (LFSR)

D Q D Q D Q D Q

XOR

clk
q2q1q0 q3

Linear Feedback Shift Register (LFSR)
q3 q2 q1 q0 Decimal Hex

0 0 0 1 1 1

0 0 1 0 2 2

0 1 0 0 4 4

1 0 0 1 9 9

0 0 1 1 3 3

0 1 1 0 6 6

1 1 0 1 13 d

1 0 1 0 10 a

0 1 0 1 5 5

1 0 1 1 11 b

0 1 1 1 7 7

1 1 1 1 15 f

1 1 1 0 14 e

1 1 0 0 12 c

1 0 0 0 8 8

0 0 0 1 1 1

LFSR Verilog Example

module lfsr(input clk,
input rstn,
output reg [3:0] q);

always @ (posedge clk) begin
if (!rstn) q <= 4’b1;
else q <= {q[2:0], q[2] ^ q[3]};

end

endmodule

Testbench

module lfsr_tb;

reg clk;
reg rstn;
wire [3:0] q;

lfsr dut(clk, rstn, q);

always #5 clk <= ~clk;

lfsr_tb.v

Continued…

Testbench

initial begin
clk <= 0;
rstn <= 0;

#20 rstn <= 1;
#80 rstn <= 0;
#50 rstn <= 1;

#200 $finish;
end

endmodule

