
FPGA Basics 1

Combinational Logic Design in Verilog HDL

What is FPGA?
 A field-programmable gate array (FPGA) is an integrated

circuits designed to be configured by a user.
 The FPGA configuration is generally specified using

hardware description language (HDL)
 FPGAs contain an array of programmable logic block and

a hierarchy of reconfigurable interconnects that allow the
blocks to be wired together.

What can FPGAs be used for?
 FPGAs can be used to solve any problems which is

computable.
 Hardware acceleration is a main FPGA use case.
 The advantage lies in that FPGAs are sometimes

significantly faster for some application because of their
parallel nature.

 Specific applications of FPGAs include digital signal
processing, computer vision, speech recognition,
cryptography and a growing range of other areas.

GNSS Receiver Architecture

Correlators

Channel

Micro-
Controller

Acquisition
Tracking
Navigation

Antenna

Frontend

Digital SignalRF Signal

Position
Velocity
Timing

FPGA
IF signal

Types of Logic Circuits
 There are two types of logic circuits depends on their

output and memory used.
 Combinational logic circuits
 Sequential logic circuits

 The outputs of a combinational logic circuit are
determined from only the present combination of inputs.

 The outputs of a sequential logic circuit are determined
from both the present combination of inputs and
previous outputs. That means sequential logic circuits use
memory elements to store the value of previous outputs.

Combinational Logic Circuits
 Combinational logic circuits are made up from basic logic

NAND, NOR or NOT gates that are “combined”
together to produce more complicated logic circuits.

Combinational
Logic Circuit

A
B
C

X

Y

One or More
Outputs

Multiple
Inputs

Sequential Logic Circuits
 In sequential logic circuits, the things happen in a

“sequence”, one after another, and the clock signal
determines when things will happen next.

Combinational
Logic Circuit

Inputs Outputs

Memory

Positive
Feedback

Previous
State

Clock
Signal

What is an HDL?
 Hardware description languages allow you to describe a

logic circuit using words and symbols, and then
development software can convert that textual
description into configuration data that is loaded into the
FPGA.

 The most popular hardware description languages are
Verilog and VHDL.

Programing Languages vs. HDLs
 HDLs resemble high-level programming languages such as

C and Python, but it is important to understand that
there is a fundamental difference: statements in HDL
code involve parallel operation.

 When we write a computer program, we understand that
the processor will execute lines of code one at a time,
following the top-to-bottom organization.

 In HDL code, we are describing digital hardware, and
separate portion of this hardware can operate
simultaneously, even though the corresponding lines of
code are written using a top-to-bottom organization.

GNSS Correlator Architecture
 Correlators are the key operation for GNSS receivers to

synchronize with the incoming signal.
 The maximum correlation peak is acquired when the

both code and carrier replicas match the incoming signal.

Accumulator
IF signal Correlation

Code replica

Carrier replica

Mixer

Binary Addition of Two Bits
 When the two single bits are added together, the addition

of “0+0”, “0+1” and “1+0” results in either a “0” or a “1”.
 The sum of “1+1” is equal to “2”, but it does not exist in

binary.
 The decimal “2” is equal to the binary “10”, in other

words a zero for the sum plus an extra carry bit.

Carry Sum

Half Adder

Half
Adder

A

B

S (Sum)

C (Carry)

A
B

{ C , S }

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Truth Table

S = A XOR B = A ^ B

C = A AND B = A & B

Half Adder Verilog Example

module half_adder(A, B, S, C);

input A, B;
output S, C;

assign S = A ^ B;
assign C = A & B;

endmodule

Modules
 A “module” is a basic unit in Verilog code that implement

a certain functionality.
 A module should be enclosed within “module” and

“endmodule” keywords.
 Name of the module should be given right after the

“module” keyword, and a list of “ports” should be
declared as well.

module half_adder(A, B, S, C);

...
endmodule

Name Ports

Types of Ports
 input
 Simple input
 The design module can only receive values from outside.

 output
 Simple output
 The design module can only send values to outside.

 inout
 Tri-state bi-directional port
 The design module can either send or receive values.

Wires and Assignments
 To make a continuous assignment to an internal signal in

the module, the signal must first be declared as a “wire”.
 Ports are by default considered as signals of type “wire”.

 Any “wire” can be driven continuously with a value by the
“assign” statement.

input A, B;
output S, C;

assign S = A ^ B;
assign C = A & B;

Bitwise Operators
 Each bit is operated.
 Result is the size of the largest operand, and the smaller

operand if left extended with zeros to the size of the
bigger operand.

Character Operation

~ NOT (invert) each bit

& AND each bit

| OR each bit

^ XOR each bit

Full Adder

Full
Adder

A

B
Sum

CoutCin
The carry bit from
the previous lower
significant position.

A B Cin Sum Cout

0 0 0 0 0

0 1 0 1 0

1 0 0 1 0

1 1 0 0 1

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 1

Hierarchical Design in Verilog
 A hierarchical methodology is used to design simple

components to construct more complex one.
 For example, the full adder is basically two half adders

connected together.

Half Adder

HA1
Sum

Carry

A

B
HA2

Sum

Carry

Half Adder
A^B

Sum
(A^B)^Cin

OR
Cin CoutA&B

(A^B)&Cin

Full Adder Verilog Example

module full_adder(A, B, Cin, Sum, Cout);

input A, B, Cin;
output Sum, Cout;
wire S1, C1, C2;

half_adder HA1(A, B, S1, C1);
half_adder HA2(S1, Cin, Sum, C2);

assign Cout = C1 | C2;

endmodule

3-Bit Adder
 If you want to N-bit adder, N number of full adders need

to be connected or “cascaded” together to produce what
is known as a “ripple carry adder”.

FA0

Sum

Cout Cin

A B

FA1

Sum

Cout Cin

A B

FA2

Sum

Cout Cin

A B
C0C1Cout “0”

MSB LSB

A0 B0A1 B1A2 B2

S0S1S2

3-Bit Adder Verilog Example

module adder(A, B, Sum, Cout);

input [2:0] A, B;
output [2:0] Sum;
output Cout;
wire C0, C1;

full_adder FA0(A[0], B[0], 0, Sum[0], C0);
full_adder FA1(A[1], B[1], C0, Sum[1], C1);
full_adder FA2(A[2], B[2], C1, Sum[2], Cout);

endmodule

Another 3-Bit Adder Verilog Example

module adder3(A, B, Sum, Cout);

input [2:0] A, B;
output [2:0] Sum;
output Cout;

assign {Cout, Sum} = A + B;

endmodule

Concatenation Operators
 Multi-bit wires and variables can be clubbed together

using concatenation operators { and } separated by
commas.

wire [7:0] high1, low1;
wire [7:0] high2, low2;
wire [15:0] data;

assign data = {high1, low1};
assign {high2, low2} = data;

Design Flows

HDL Design

Behavioral
Simulation

Synthesis

Implementation

Architecture Design

Bitstream

This process transforms the HDL design into a gate
level representation (netlist).

This is the process of creating the hardware logic itself,
typically by writing register-transfer level (RTL) using a
hardware description language (HDL).

This step ensure that the design works as intended
using a specified testbench module.

This step provides all the features necessary to optimize,
place and route the netlist onto the available device
resources of the target part.

