# 08: Signal Tracking

Taro Suzuki

# Signal Tracking

- Doppler frequency and code phase changes due to satellite and receiver motion and clock variations
- The purpose of signal tracking is to estimate (track) Doppler frequency and code phase as they vary with time



Tracking is performed in the time domain

By using feedback control, these two values can be tracked

Feedback System

# • Feedback system Input + Error K + Error K

- A Delay Lock Loop (DLL) tracks the code phase
- A Phase-Locked Loop (PLL) tracks the carrier phase
- A Frequency-Locked Loop (FLL) tracks the carrier frequency

## **GNSS Signal Processing**



## **GNSS Signal Correlation**

1 Replica PRN code generation

2 Correlation between replica code and incoming signal



Correlation in Time-Domain

- Remove carrier phase
- Correlation with local replicas



## E-P-L Correlator (1)

How to estimate tracking error?

Early-Prompt-Late (E-P-L) correlator





## E-P-L Correlator (2)



## Exercise 1: E-P-L Correlator

#### MATLAB

- /08\_Signal\_Tracking/matlab/Ex1\_run\_EPL\_correlation.m
- Using code phase and Doppler frequency estimated by signal acquisition



- Advanced challenge:
  - Try for different satellites
  - Add very-early and very late correlators

# Effect of Multipath on Correlation (1)

LOS and NLOS multipath



## Effect of Multipath on Correlation (2)



# Correlator Type

Narrow correlator



Double-delta correlator
 strobe correlator



- Narrow the width of the Early and Late correlation points
- Requires wide bandwidth

## BPSK vs. BOC (1)



## BPSK vs. BOC (2)



-14-

## DLL vs. PLL vs. FLL

#### Delay Lock Loop

- Purpose: Compute pseudorange for user position calculation
- **Operation**: Generates a replica of the PRN code transmitted by the satellite and maintains synchronization with the received code

#### Phase Lock Loop

- **Purpose**: Demodulation of navigation data
- Measurement of pseudorange change rate for user speed calculation
- Calculation of carrier phase for RTK, etc.
- **Operation**: Adjusts the frequency and phase of the replica sine wave to synchronize with the phase of the input carrier wave

#### Frequency Lock Loop

- **Purpose**: Frequency trapping between signal acquisition and PLL start
- Rough tracking in poor reception conditions
- **Operation**: The frequency difference between the replica signal and the received signal is detected by the discriminator, and the replica signal oscillator is controlled to set the frequency difference to zero

## Delay Lock Loop (1)

Time domain



 $r[t; \theta(t)]$ : received code  $\hat{r}[t; \hat{\theta}(t)]$ : local code

 $\delta\theta(t)$ : code phase error  $\dot{\theta}(t)$ : code phase rate  $\hat{\theta}(t)$ : estimated code phase

## Delay Lock Loop (2)

#### Error discriminator

$$rac{1}{2} \, rac{(E\!-\!L)}{E\!+\!L} \qquad egin{array}{c} ullet E = \sqrt{I_E^2+Q_E^2} & ext{is the Early correlation power.} \ ullet L = \sqrt{I_L^2+Q_L^2} & ext{is the Late correlation power.} \end{array}$$





# Delay Lock Loop (3)

Typically modeled as first order system



- Large loop bandwidth tracks target value quickly
- Smaller loop bandwidth reduces noise

# Phase Lock Loop (1)

#### Frequency domain



 $\varphi_r(s)$ : received carrier phase  $\hat{\varphi}(s)$ : local carrier phase  $\varphi_e(s)$ : phase error  $\delta \varphi(s)$ : magnified phase error  $f_{PLL}(s)$ : frequency tracked by PLL  $K_d$ ,  $K_o$ : the gain of PD and NCO

# Phase Lock Loop (2)

Error discriminator Q Coherent  $\Phi_e = ATAN2(Q_P, I_P)$ Navigation bit = +1Costas discriminators  $Q_P = \operatorname{Im}\{Z_P\}$  $Z_P$  $\sin(2\Phi_e) = Q_P \times I_P$  $\Delta \theta$  $I_P = \operatorname{Re}\{Z_P\}$  $Z_P$ Navigation bit = -

Typically modeled as second order system



- Large loop bandwidth tracks target value quickly
- Smaller loop bandwidth reduces noise

-21-

# Frequency Lock Loop

- If the frequency is shifted, the correlation value vector is rotated
- Error discriminator

$$S_{P,I,n-1} S_{P,Q,n} - S_{P,I,n} S_{P,Q,n-1}$$

Approximate frequency shift = angular velocity as an outer product



## Simulink Implementation (1)



# Simulink Implementation (2)

#### Tracking else {}



## Exercise 2-1: Signal Tracking

Simulink

/08\_Signal\_Tracking/simulink/Ex2/tracking\_lch.slx





-25-

## Exercise 2-2: Signal Tracking

- Simulink
  - /08\_Signal\_Tracking/simulink/Ex2/tracking\_lch.slx

Tracking [

1 data

2 dfreg

prn

Plot tracked code frequency/carrier frequency





## Exercise 2-3: Signal Tracking

#### Simulink

/08\_Signal\_Tracking/simulink/Ex2/tracking\_lch.slx

#### Change DLL/PLL bandwidth

Check signal tracking results

```
%% Tracking
33
34
35
         % ccorrelation space
         paramd.corrspace = 1; % sample
36
37
38
         % DLL noise bandwidth [Hz]
39
         paramd.trk.dllB = 2;
40
         % PLL noise bandwidth [Hz]
41
         paramd.trk.pllB = 30;
42
43
44
         % FLL noise bandwidth [Hz]
45
         paramd.trk.fllB = 250;
46
47
         paramd.trk.dllw2 = (paramd.trk.dllB/0.53)^2; % factor of DLL
         paramd.trk.dllaw = 1.414*(paramd.trk.dllB/0.53); % factor of DLL
48
         paramd.trk.pllw2 = (paramd.trk.pllB/0.53)^2; % factor of PLL
49
         paramd.trk.pllaw = 1.414*(paramd.trk.pllB/0.53); % factor of PLL
50
         paramd.trk.fllw = paramd.trk.fllB/0.25; % factor of FLL
51
52
         0/0/
```

# Exercise 2-4 : Signal Tracking

#### PLL aided DLL

- The estimated frequency change of PLL is sufficiently accurate
- DLL measurements are intended to remove long-time bias in the estimated frequency of the carrier tracking loop
- The PLL assist reduces the noise bandwidth sufficiently to reduce noise



## Exercise 3: Real-time Signal Tracking

#### Simulink

- /08\_Signal\_Tracking/simulink/Ex3/tracking\_lch\_realtime.slx
- Real-time Signal Tracking
  - Connect RTL-SDR
    - Turn of <u>Bias-T</u>
  - Use of <u>RTL-SDR Receiver</u>

| 🔁 วีบงก //ีรX-タ−: RTL-SDR Receiver 🛛 🗙                          |
|-----------------------------------------------------------------|
| RTL-SDR Receiver (mask) (link)                                  |
| Receive data from an RTL-SDR radio.                             |
| Radio Connection                                                |
| Radio address: 0                                                |
|                                                                 |
| Into                                                            |
| Radio Configuration                                             |
| Source of center frequency: Dialog                              |
| Center frequency (Hz): 1575.42e6                                |
| Source of gain: AGC                                             |
| Sampling rate (Hz): 2.048e6                                     |
|                                                                 |
| requency correction (ppm): 0                                    |
| Data Transfer Configuration                                     |
| Lost samples output port                                        |
| Latency output port                                             |
| Output data type: int16                                         |
| Samples per frame: 2048*10                                      |
| Enable burst mode                                               |
|                                                                 |
| OK( <u>O</u> ) キャンセル( <u>C</u> ) ヘルプ( <u>H</u> ) 適用( <u>A</u> ) |