

Modulation

 Modulation is defined as the process of superimposing a low-frequency information signal on a high-frequency carrier wave.

Binary Phase Shift Keying (BPSK)

- BPSK is a digital modulation scheme that conveys data by changing two different phases of the carrier wave.
- This gives maximum phase separation between adjacent points and thus the best immunity to corruption.

• The power spectrum of a rectangular chip is the wellknown sinc function.

Frequency Down Conversion

 The conversion of a high-frequency radio signal to a band-limited lower frequency (intermediate frequency) at a lower sampling rate.

Frequency Down Converter

Heterodyne Frontend Architecture

Quantization

- Typical GNSS frontend utilizes two-bit ADC.
- AGC maintains an optimal signal level for the ADC input.
- Since GNSS signal is weaker than thermal noise, the observed ADC output distribution should be Gaussian.

Quadrature Modulation

- Any phase shift keying can be generated by changing the amplitudes of two carrier waves.
- The two carrier waves of the same frequency are out of phase with each other by 90°, a condition known as orthogonality or quadrature.

$$s(t) = I(t)\cos(\omega t) + Q(t)\sin(\omega t)$$
$$= \sqrt{I(t)^2 + Q(t)^2}\cos(\omega t - \phi)$$

where
$$\phi = \cos^{-1} \frac{I(t)}{\sqrt{I(t)^2 + Q(t)^2}} = \sin^{-1} \frac{Q(t)}{\sqrt{I(t)^2 + I(t)^2}}$$

Quadrature Phase Shift Keying (QPSK)

 QPSK modulates two bits at once by selecting one of four possible carrier phase shifts of 0°, 90°, 180°, or 270°.

QPSK and Quadrature Modulation

Symbol	QPSK	Quadrature Modulation
00	$\cos(\omega t - 0^{\circ}) = +1 \cdot \cos(\omega t)$	
01	$\cos(\omega t - 90^\circ) = +1 \cdot \sin(\omega t)$	
10	$\cos(\omega t - 180)$	$^{\circ}) = -1 \cdot \cos(\omega t)$
П	$\cos(\omega t - 270)$	$(\circ) = -1 \cdot \sin(\omega t)$

Constellation Diagram

 A constellation diagram displays the signal as a twodimensional I/Q-plane scatter diagram at symbol sampling instants.

Coherent Demodulation

$$i(t) = s(t) \cos(\omega t)$$

$$= I(t) \cos(\omega t) \cos(\omega t) + Q(t) \sin(\omega t) \cos(\omega t)$$

$$= \frac{1}{2}I(t)\{1 + \cos(2\omega t)\} + \frac{1}{2}Q(t) \sin(2\omega t)$$

$$= \frac{1}{2}I(t)$$

$$IPF$$

$$IPF$$

$$IPF$$

$$IPF$$

$$IPF$$

$$IPF$$

$$IPF$$

$$IPF$$

$$IV$$

$$IPF$$

$$IV$$

$$IV$$

Coherent Demodulator

MAX2771 GNSS RF Frontend

PocketSDR

- An open-source dual-frequency GNSS frontend designed by Tomoji Takasu, the creator of RTKLIB.
 - https://github.com/tomojitakasu/PocketSDR

IF Signal Example

Þ

I/Q Signal Example

> python pocket_psd.py ..¥sample¥L6_20211125_004000_12MHz_IQ.bin -f 12 -h -IQ

Configure PocketSDR

> pocket_conf ..¥conf¥pocket_L1L6_12MHz.conf

C:¥Windows¥System32¥cmd.exe

D:¥Work¥PocketSDR¥python>pocket_conf ..¥conf¥pocket_L1L6_12MHz.conf Pocket SDR device settings are changed.

D:¥Work¥PocketSDR¥python>_

Pocket_L1L6_12MHz.conf

 \times

CH1: $f_{IF} = f_{L1} - f_{L0} = 1575.42$ MHz - 1572.42MHz = 3MHz

Þ

Capture GNSS Signals

> pocket_dump -t 1 ch1.bin ch2.bin C:¥Windows¥System32¥cmd.exe \times D:¥Work¥PocketSDR¥python>pocket_dump -t 1 ch1.bin ch2.bin TIME(s) T CH1(Bytes) T CH2(Bytes) RATE(Ks/s) 1.1 I 12615680 IQ 25231360 12014.9 D:¥Work¥PocketSDR¥python>_ 📙 | 🛃 📑 🖛 | python \times ファイル ホーム 共有 ? 表示 \leftarrow \rightarrow \checkmark \uparrow \bigcirc « Work \rightarrow PocketSDR \rightarrow python \rightarrow ✓ ひ シ pythonの検索 サイズ 名前 更新日時 種類 _____pycache___ 2022/06/24 13:45 ファイル フォルダー 2022/06/24 14:33 ファイル フォルダー Data ch1.bin BIN ファイル 2022/08/06 17:35 12.320 KB ch2.bin 2022/08/06 17:35 BIN ファイル 24.640 KB 🕞 fftw_wisdom.py 2022/02/15 19:43 Python File 2 KB fftw_wisdom.txt 2022/02/15 19:43 テキスト ドキュメント 2 KB 📄 pocket_acq.py 2022/02/15 19:43 Python File 13 KB pocket_plot.py 2022/02/15 19:43 Python File 8 KB 🕞 pocket_psd.py 2022/02/15 19:43 Python File 6 KB pocket_snap.py 2022/02/15 19:43 Python File 14 KB 19 個の項目

GNSS Signal Acquisition

> python pocket_acq.py ch1.bin -f 12 -fi 3 -sig L1CA -prn 1-32

	C:¥Windows¥System32¥cmd.exe	_	×
D	I:¥Work¥PocketSDR¥python>python pocket acq.py ch1.bin -f 12 -fi 3 -sig L1CA -prn 1-32		^
S	NG= L1CA, PRN= 1, COFF= 0.54658 ms, DOP= -94 Hz, C/NO= 33.8 dB-Hz		
S	AG E LICA, FINE 2, COFF 0.62203 ms, DOP 1681 Hz, C/NO 34.6 dB-Hz		
S	NG= LICA, PRN= 4, COFF= 0.77025 ms, DOF= 998 Hz, C/NO= 33.9 dB-Hz		
S	SIG= L1CA, PRN= 6, COFF= 0.10950 ms, DOP= 36 Hz, C/NO= 33.5 dB-Hz SIG= L1CA, PRN= 7, COFF= 0.82458 ms, DOP= 129 Hz, C/NO= 33.9 dB-Hz		
Ŝ	NG= LICA, PRN= 8, COFF= 0.41242 ms, DOP= -81 Hz, C/NO= 33.8 dB-Hz		
Š	IG= LICA, PRN= 10, COFF= 0.52592 ms, DOP= 5000 Hz, C/N0= 34.0 dB-Hz		
З S	JG= LICA, PRN= II, COFF= 0.19267 ms, DOP= 5000 Hz, C/NO= 33.6 dB-Hz JG= LICA, PRN= 12, COFF= 0.36833 ms, DOP= -2041 Hz, C/NO= 33.7 dB-Hz		
S	L34mSIG= L1CA, PRN= 13, COFF= 0.47800 ms, DOP= -2293 Hz, C/NO= 50.2 dB-Hz·L0m SIG= L1CA, PRN= 14, COFF= 0.80025 ms, DOP= -409 Hz, C/NO= 36.5 dB-Hz		
Ŝ	NG= LICA, PRN= 15, COFF= 0.71600 ms, DOP= -380 Hz, C/NO= 33.7 dB-Hz		
S	Fige LICA, PRN= 10, COFF= 0.50400 ms, DOF= 2400 Hz, C/NO= 33.8 dB-Hz		
S	SIG= LICA, PRN= 18, COFF= 0.03525 ms, DOP= -2074 Hz, C/NU= 34.3 dB-Hz		

GNSS Signal Acquisition

